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Abstract

We present a new deterministic algorithm for the #3-SAT problem,
based on the DPLL strategy. It uses a new approach for counting models
of instances with low density. This allows us to assume the adding of
more 2-clauses than in previous algorithms. The algorithm achieves a
running time of O(1.6423n) in the worst case which improves the current
best bound of O(1.6737n) by Dahllöf et al.

1 Introduction

The canonical NP-complete problem SAT has received a lot of attention in the
last decades. As a natural extension of the problem one is interested not in
finding a satisfying assignment for a given SAT instance but in counting the
number of all possible solutions.
The counting complexity class #P has been presented by Valiant in [9]. He also
proved that both #2-SAT and #3-SAT are #P-complete [10].
It is obvious that the standard DPLL procedure solves the problem in O(2n)
steps. Algorithms with better bounds have been presented ([1, 2, 5, 8, 11]).
Dahllöf et al. [2] achieved the best known bounds for #2-SAT (O(1.2561n))
and #3-SAT (O(1.6737n)). Slight refinement of their analysis performed in [6]
yields the new record running time for #2-SAT of O(1.246n).
Our algorithm is a variant of the DPLL procedure [3, 4] and improves the bound
for #3-SAT to O(1.6423n). It profits from the very good result for #2-SAT from
[2, 6] and a new lemma which allows us to assume that the number of models
of 3-SAT instances over n variables with density less than or equal to 5/3 can
be determined in O(1.6409n).

2 Preliminaries

As usual, n denotes the number of variables, m the number of clauses and
d := m/n the density of the formula. Variables are written as xi and literals as
xi (for positive ones) and ¬xi (for negative ones). V denotes the set of variables
and L := V ∪ V the set of the literals.
An unsatisfied clause with exactly one unassigned variable is called a unit clause,
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and an unsatisfied clause with two (resp. three) unassigned variables is called
2-clause (resp. 3-clause.) A 3-clause c3 is subsumed by the 2-clause c2 if all
literals in c2 occur in c3.
An assignment α is called to be total if it assigns a boolean value to each v ∈ V .
A partial assignment assigns a value to a given subset of V .
F3 stands for the subformula of F that contains exactly the 3-clauses from F
and F2 for the subformula where every unsatisfied clause contains at most two
unassigned literals. F2 and F3 both depend on the current partial assignment
and are not fixed during the execution of the algorithm. The density of F3 is
defined as the number of 3-clauses divided by the number of unassigned variables
in the formula (this definition implies that it is possible that F3 has density less
than 1/3).
The complexity of a given SAT instance is written as µ(F ) = n− λ(F2) where
λ(F2) denotes the weight of F2. (The exact way for the weighting of F2 will be
explained later.)
The degree of each variable x, i.e. d(x), gives the number of occurrences of the
variable x in the formula. d2(x) and d3(x) denote the number of occurrences of
the variable x in F2 and F3, respectively.
A set of clauses is called variable-disjoint if no two clauses in the set share a
variable.
A satisfying assignment (or model) α is an assignment making each clause in
the formula true. A formula containing the empty clause has no model, and an
empty formula has one model.

3 The algorithm

3.1 The algorithm for 3-SAT instances with low density

Let’s consider the following problem: Given a 3-SAT instance F in which no
variable occurs more than five times. What is the number of models for F?
The following Algorithm 1 solves the problem:

1. Initialize F3 := F , F2 := ∅
2. Find a variable with the most occurrences in F3, recursively

branch on it and update F3 and F2.
3. Repeat step 2) until F3 becomes empty.
4. Solve the #2-SAT problem in the current branch and update

the number of models for F .

Lemma 1. Algorithm 1 runs in O(1.6796n).

Proof. Let a(i)
F3

be the number of the 3-clauses in the i-th step in F3. We

initialize a(0)
F3

:= m. The following recursion gives an obvious lower bound for
the number of 3-clauses which can be deleted from F3 in the i-th step (deleted
means that these either become satisfied or 2-clauses):

a
(i+1)
F3

= a
(i)
F3
− d3a(i)

F3
/(n− i)e = ba(i)

F3
− 3a(i)

F3
/(n− i)c

We are interested in the value for i when a
(i)
F3

= 0 becomes true.
Let’s first generalize the recursion for the case when each of the n variables
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occurs at most k times, implying that we have at most n ·k/3 clauses in F3. Let
x denote the number of the variables we need to assign until a state with the
density (k − 1)/3 is reached . By solving the linear equation

(k/3)n− kx = ((k − 1)/3)(n− x)

we compute x = 1/(2k + 1)n. Therefore we have n(1− 1/(2k + 1)) unassigned
variables. By starting with k = 5 we compute n(1−10/11·8/9·...·2/3) < 0.631n.
Therefore we easily compute an upper bound for the running time of the algo-
rithm to 20.631n · 1.2460.369n = O(1.6796n). 2

Let’s now cast a more detailed look on Algorithm 1. We concentrate on the
case when F3 has density ≤ 1/3.
Before starting with the analysis we consider the following simplification:

Lemma 2. Let (a∨ b) be a 2-clause in F2. If there exists a 3-clause of the kind
(a ∨ ¬b ∨ c) we replace it with the 2-clause (a ∨ c).

Proof. If we branch as ¬a,¬c and (a ∨ c) we observe that we can cut the
first branch. Thus, we need to consider only the branch where we add the 2-
clause (a ∨ c). 2

3-clauses of the above kind are called quasisubsumed 3-clauses.

Before a branching is performed we first check for subsumed or quasisubsumed
3-clauses. (It is clear that after this simplification the number of satisfying as-
signments remains unchanged.)
We distinguish now the following cases:

1. There is a variable a with d3(a) > 1. We branch on the found variable.

2. The variables a, b, c don’t occur in F2. We delete the clause (a∨ b∨ c) and
after termination of the recursion we multiply the computed value for the
number of models in this branch by 7.

3. Now we assume that at least one of the considered variables occur in F2,
w.l.o.g. a and at least one of the variables b, c not occur in F2, w.l.o.g. c.
Then we branch on a and since it occurs in F2 we conclude that in the
one branch two variables are assigned. In one of the two branches c does
not occur any more. We assume the worst case that in one branch three
variables are assigned and in the other only one.

4. Now we assume that all three variables a, b, c are present in F2. Let’s
consider the 2-clauses ([¬]a∨ l). ([¬]a means that we generalize the cases
a and ¬a.)

(a) Let’s first assume that the variable l is different from the variables
b and c. We consider first the situation (a ∨ l) and branch in the
following way: (a∨b) and ¬a,¬b. The setting ¬a,¬b obviously implies
the literals c and l.
If we have the 2-clause (¬a∨ l) then we branch as follows: (b∨ c) and
¬b,¬c. The literals ¬b,¬c imply a and this implies the literal l. So
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in the two cases the number of 3-clauses in each branch decreases by
one. In one branch the number of the unassigned variables remains
unchanged and in the other we assign four variables. (Unfortunately,
we can’t conclude that also one further 3-clause is eliminated since
it is possible that the implied variable l occurs only in F2.)

(b) Let’s now assume that no variable different from a, b and c occurs in
the 2-clauses in which a, b and c occur. Lemma 2 guarantees that the
existence of 2-clauses of the kind (a∨¬b) simplifies (a∨b∨c) to (a∨c)
without branching. Since subsumed 3-clauses are also eliminated it
is a simple observation that the single possibility that the considered
case remains is when w.l.o.g. the 2-clauses (¬a ∨ ¬b), (¬a ∨ ¬c) are
present in F2. Then we branch on a and in the two branches we
delete one 3-clause and in one branch we assign one variable, ¬a,
and in the other one three (a,¬b,¬c).

Now we update Algorithm 1 to Algorithm 2 as follows:

1. Initialize F3 := F , F2 := ∅
2. Find a variable with the most occurrences in F3, recursively

branch on it and update F3 and F2.

3. Repeat step 2) until F3 has density no more than 1/3.

4. Check which of the above described cases remains and split the
formula according to it until F3 becomes empty.

5. Solve the #2-SAT problem in the current branch and update
the number of models for F .

Lemma 3. The number of solutions of a 3-SAT instance over n variables with
density less than or equal to 5/3 can be examined in O(1.6409n).

Proof. Let’s first denote the number of variables we need to assign until the
density of F3 becomes 1/3 with n1/3. Let’s now assume that we have already
branched on the required n1/3 variables. In order to analyze the running time
for the remaining formula we introduce a new complexity measure:
Let nr := n − n1/3 denote the number of unassigned variables in the formula.
Then the complexity of the given instance is 1.246nr+w|F3| where |F3| is the
cardinality of F3 and w ∈ R is an unknown parameter, i.e. the weight of F3.
The measure nr +w|F3| is correct since the emptiness of F3 implies the running
time for the #2-SAT problem and nr +w|F3| = 0⇒ nr = 0 (since |F3| depends
on nr).
If we assign d variables and delete f 3-clauses we write the decreased complexity
as nr − d+ w(|F3| − f).
Since 1.246nr+w|F3| denotes the number of the recursion branches, we are in-
terested in the value of w so that each inequality of the kind 1.246nr+w|F3| ≥∑k
i=1 1.246nr−di+w(|F3|−fi) holds, where (di, fi)1≤i≤k are the values for the com-

plexity decrease in the two components in the i-branch. In the following we use
the notation γ(d1 + w · f1, .., dk + w · fk) for inequalities of the above kind.
Now we distinguish the different recursion cases and define the corresponding
inequality:

1. γ(1 + 2w, 1 + 2w)

4



2. γ(3 + w)

3. γ(1 + w, 3 + w)

4. a) γ(w, 4 + w)

4. b) γ(1 + w, 3 + w)

In the same way as in Lemma 1 we compute n1/3 ≤ 0.446n and following
nr ≥ 0.554n. It is also clear that |F3| ≤ bnr/3c. For w = 1.58 we observe that
each of the recursion inequalities holds. Therefore, we compute the running
time to 2n1/3 · 1.246nr+1.58nr/3 = O(1.6409n). 2

3.2 The complexity measure

Let’s now explain how we compute the complexity of a given boolean formula
F . As already mentioned the complexity is written as µ(F ) = n − λ(F2). The
weight of the 2-clauses, λ(F2), is built in the following way: The set of all 2-
clauses is divided in three subsets: S (for single), T (for two) and R (for rest).
S is built from arbitrary chosen 2-clauses in F2, so that no variable in the S-
clauses occurs more than once in S, T may contain any two (but only two!)
2-clauses and all 2-clauses which don’t fit in S or T are in R. The S-clauses
and T -clauses are weighted with a positive real constant, denoted as ε. The
R-clauses are not weighted. It is clear that for ε < 1 for the weight of F2 follows
λ(F2) ≤ (n/2 + 2)ε < n/2 + 2. Therefore the complexity µ(F ) = 0 implies that
we have no more than constant number of unassigned variables in the formula.
(This is a similar model to the one of Zhang [11] for the 3-SAT problem.)

3.3 The #3−SAT algorithm

In this section we show how the algorithm for instances with low density leads
to an improvement of the running time for the general #3-SAT problem.
We always choose a variable with a maximal degree in S and T and branch on
it. We consider all possible combinations which can occur.

Algorithm 3

• Case 0: F2 is empty. Find a variable x with the maximum degree d(x)
in F3. If d(x) < 6 apply Algorithm 2. Otherwise branch on x. For each
branch:
Branch on a chosen variable in the added 2-clauses until all the remaining
2-clauses can be put into S ∪T . (The exact way for choosing the variable
is explained in the analysis.)

• Case 1: All 2-clauses in F2 are in the subset S. (T is still empty.) Find
the variable in F2 of maximum degree and recursively branch on it. If in
one branch we have a variable of degree 1, e.g. if a occurs only in the
clause (a ∨ l1 ∨ l2), branch on l1.

• Case 2: The subset T is not empty and no variable occurs more than twice
in F2. Find a variable x with d2(x) = 2 which will cause the deletion
of minimal number of 2-clauses and recursively branch on it. If in one
branch four weighted 2-clauses are deleted, then in the other we have an
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appropriate variable and branch on it. (The existence of such a variable
is proven in the analysis section.)

• Case 3: There is a variable occurring altogether three times in S and T .
Branch recursively on this variable.

The analysis

Let’s first explain how we compute the complexity of a splitting algorithm [7].
Let (d1, .., dk) be a given splitting where di denotes the complexity decrease in
the i-th branch for 1 ≤ i ≤ k. Then the branching number τ(d1, .., dk) is defined
as the unique positive root of the equation xn =

∑k
i=1 x

n−di . The running
time of a splitting algorithm does not exceed τ

µ(F )
max where τmax is the maximal

splitting number of this algorithm.

Case 0: Since the number of the added 2-clauses is unknown, we consider only
six of the added 2-clauses. We analyze only the worst case when all six 2-clauses
are added in one branch. It is easy to verify that the more symmetric is the
complexity decrease in the two branches the better is the running time [7]. The
analysis for the other cases can be immediately concluded from this one.
If a variable occurs 3 ≤ k ≤ 6 times in the added 2-clauses then we branch on it
and the corresponding branching number is computed to τ(1, 2+(6−k)ε, k+2).
(It is clear that up to three 2-clauses always fit in the S- and T -slots since F2

is empty.)
Assume that no variable occurs more than twice in the added six 2-clauses. First
of all we observe that each four of the considered 2-clauses will fit in S and T
(There always exist two variable-disjoint 2-clauses which can be put into S.). If
we have the 2-clauses (l1 ∨ l2), (¬l1 ∨ l3) we easily obtain τ(1, 3 + 3ε, 3 + 3ε).
Let’s now consider the 2-clauses (l1 ∨ l2), (l1 ∨ l3). If at least one of l2, l3 does
not occur in another of the six 2-clauses or l2 and l3 share a 2-clause we branch
on l1. In the following we call such variables of degree two suitable variables.
The corresponding branching number is easily computed to τ(1, 2 + 4ε, 4 + 3ε)
by branching on l1 in the right branch.
If there exists no suitable variable and not all six 2-clauses fit in S and T , we
conclude a ”deadlock” situation, i.e. six variables forming six 2-clauses so that
each variable occurs twice: e.g. (l1∨l2), (l3∨l4), (l1∨l3), (l2∨l5), (l4∨l6), (l5∨l6).
Then the following observation is trivial: We can branch on a variable of degree
two and in the branch where we set one literal one of the variables becomes
suitable. Therefore we compute the branching number τ(1, 2 + 4ε+ 1− 2ε, 2 +
4ε + 3 − 3ε, 4 + 2ε) = τ(1, 3 + 2ε, 5 + ε, 4 + 2ε) by branching on the suitable
variable.
Otherwise all the six 2-clauses can be weighted with ε. Thus, we compute the
branching number to τ(1, 1 + 6ε).

Case 1: The goal in this case is to show that we have a worst case branch-
ing number τ(1− ε, 2 + ε).
Let’s consider the 2-clause (a∨ b). If one of the two variables occurs only in this
clause then we branch on the other variable and easily compute the branching
number τ(2− ε, 2− ε).
If d3(a) = d3(b) = 1 then after branching on one of the variables, w.l.o.g.
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a, we obtain for the worst case τ(1 − ε, 2). In the a-branch the variable b
has degree 1, w.l.o.g. it occurs as b in the 3-clause (b ∨ l1 ∨ l2). We branch
on l1 and in one branch we add one 2-clause and in the other the variable
b does not occur any more. Thus the corresponding branching number is
τ(1− ε+ 1 + ε, 1− ε+ 2, 2) = τ(2, 3− ε, 2). (We weight the added 2-clauses with
ε since the T -slots are still empty.)
Otherwise one of the variables has degree 3 and the branching number can not
exceed τ(1− ε, 2 + ε) (or τ(1, 2) which obviously yields a better bound).

Case 2: The case when a literal and its negation both occur in F2 has an
obvious bound of τ(2− 3ε, 2− 3ε) since the setting of a variable deletes at most
two 2-clauses and one of the 2-clauses is shared by the assigned variables.
Otherwise we have a literal which occurs twice. If one of the variables of de-
gree two is suitable (see the analysis of case 0) we branch on it and compute
the branching number τ(1 − 2ε, 3 − 3ε). Otherwise we consider the 2-clauses
(a ∨ b), (a ∨ c). Since the partial assignment ¬a, b, c deletes four two 2-clauses
and we have no suitable variable we conclude the existence of the 2-clauses
(b ∨ d), (c ∨ d). Then we branch first on a and in the a-branch we branch again
on d. So we obtain τ(2− 4ε, 4− 4ε, 3− 4ε).

Case 3: It is trivial that the branching number can not exceed τ(1− 3ε, 4− 5ε)
since we delete all T -clauses.

3.4 The bound O(1.6423n)

Theorem 1. The number of satisfying assignments of a given 3-SAT instance
can be examined in O(1.6423n) steps.

Proof. Let’s now list the corresponding branching numbers for each case:

1. Case 0:
τ(1, 2+(6−k)ε, k+2) for 3 ≤ k ≤ 6, τ(1, 3+3ε, 3+3ε), τ(1, 2+4ε, 4+3ε),
τ(1, 3 + 2ε, 5 + ε, 4 + 2ε), τ(1, 1 + 6ε)

2. Case 1:
τ(2− ε, 2− ε), τ(2, 3− ε, 2), τ(1− ε, 2 + ε)

3. Case 2:
τ(2− 3ε, 2− 3ε), τ(1− 2ε, 3− 3ε), τ(2− 4ε, 4− 4ε, 3− 4ε)

4. Case 3:
τ(1− 3ε, 4− 5ε)

For ε = 0.149 each branching number is minor than the desired 1.6423. 2

4 Conclusions

The main goal of the article is to present the algorithm for 3-SAT instances
with low density. We have chosen a complexity model that is easy to analyze.
A better running time can be achieved when more refined complexity measure
is considered.
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But the more intriguing question is a possible improvement of Algorithm 2. It
is clear that an improved bound for #2-SAT will automatically improve the
current bound. A more precise analysis may lead to a better running time,
especially about the number of occurrences of a given variable in F2 when it
occurs only once in F3. This would allow to assume the existence of a variable
of degree more than six in F3.
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